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Abstract. chared is a system which can detect character encoding of a
text document provided the language of the document is known. The
system supports a wide range of languages and the most commonly used
character encodings. We explain the details of the algorithm, describe the
process of creating models for various languages and present results of an
evaluation on a collection of Web pages.
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1 Introduction

When creating monolingual text corpora from the Web, one of the problems
which need to be addressed is character encoding detection. Web pages usually
contain the information about the used character encoding in the meta tags.
However, this information is not always available and not always correct, and
in general cannot be relied upon. Nevertheless, the character encoding can
usually be reliably guessed from the textual contents of a Web page.

The problem of character encoding detection can be tackled at two different
levels. First, no assumption is made about the language of the input text. In
this case both the character encoding and the language of the input may be
guessed at the same time. Second, the language of the input is known and only
the character encoding is detected. Existing systems which fall into the former
category include for instance TextCat1 and chardet2. A notable representative
of the latter category is Enca3.

The disadvantage of the existing systems is that they support only a limited
number of languages and encodings. The system we designed, on the other

1 http://www.let.rug.nl/vannoord/TextCat/
2 http://pypi.python.org/pypi/chardet
3 http://gitorious.org/enca
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hand, covers a wide range of languages and frequently used encodings for each
language.

2 chared

Our method assumes that the language of the input is known. For instance,
when building monolingual corpora this is always guaranteed.4 By narrowing
the problem down to a single language, higher accuracy can be achieved.

2.1 Algorithm

The system works as follow. First, a model is created for each supported
language. This requires two kinds of input:

1. The list of character encodings used for given language
2. A sample text in the language and in a known character encoding

We convert the sample text to all encodings from the list, creating N different
files (where N is the number of encodings). Then, for each of the files we build a
frequency list of all consequent triples of bytes. The N frequency lists (vectors)
are then compared and the items (triples) with the same frequency in all the N
vectors are discarded.

When detecting a character encoding of a document, its frequency vector
is built and a scalar product is computed with each of the N model vectors.
The character encoding associated with the model vector which produces
the highest scalar product is returned as the encoding detected for the input
document.

The advantage of building model vectors from the same data (only con-
verted to N different encodings) is that the differences among the model vectors
are only where the character encodings differ. If for instance all the N encod-
ings are ascii compatible, then any triple of bytes containing only ascii charac-
ters will have the same frequency in all model vectors. Thus, this triple would
add the same value to the scalar product with a tested document (vector) for
all models. As such it cannot affect the order of the final scalar products (and
the result of the classification) and thus it can be safely removed from all the
model vectors. This both reduces the size of the vectors and speeds up the clas-
sification. Alternative approach which builds the models on N different texts in
N different encodings prevents such pruning. Apart from that, similarity of the
tested document to the texts used for training the models (regardless of their

4 In fact, in a web corpus processing pipeline, character encoding detection has to be
performed before language detection. Thus, the assumption that the input of the
character encoding algorithm is in the language in question is not always valid.
However, this is not a problem, since all texts in other languages will be refused by the
language filter in the next step and it therefore does not matter whether their character
encoding has been detected correctly or not.
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encoding) may bias the results of the encoding detection. This bias would be
the more severe the more ascii characters (or more generally, the more charac-
ters with the same representation in all the encodings in question) are used in
the training texts (e.g. very severe for English).

The reason for using frequencies of tuples (triples in our case) of characters
rather than single characters is that some bytes represent multiple different
commonly used characters in different encodings. Such bytes may cause errors
in the encoding detection. This is best illustrated on an example. The byte
a9 represents the character c○ (copyright symbol) in windows-1250 and the
character Š (capital s with caron) in iso-8859-2. Both encodings are used for
Czech language. The Š character is much more frequent in Czech texts than the
copyright symbol. Thus, a windows-1250 text containing a copyright symbol
may be easily misclassified as iso-8859-2 since the a9 byte will have a higher
frequency in the iso-8859-2 model. Since the two encodings are very similar,
this kind of classification error is fairly likely, especially for short texts.

Building models on tuples of characters rather than on single characters
helps to overcome this problem. The copyright symbol will be typically
followed by a space whereas the Š character will be typically followed by
another letter in a Czech text. Therefore, two bytes a920 ( c○ followed by a space
in windows-1250) will certainly have a higher frequency in a windows-1250
model than in a iso-8859-2 model (for Czech). In our experiments, using triples
of characters resulted in a higher accuracy of the encoding detection than using
only pairs of characters.

2.2 Building models

In order to create models for our system, we collected a set of about 1000 Web
pages for each language. This was done using Corpus Factory tools. [1] We
identified the encoding of each page by using the information in the meta tags.
Though we are well aware that this information is not always correct we believe
the errors are so rare that they cause only an insignificant bias in the built
models. We simply discarded all pages for which we have not been able to
determine the character encoding from the meta tags.

First, for each language, we computed the relative frequencies of the
encodings used in the Web pages and accepted those with a relative frequency
above 0.5 % as the encodings commonly used for the language. We then created
a model vector for each of these encodings by converting the Web pages to the
encoding and building the frequency vector as described above.

3 Evaluation

To evaluate the system, we performed a 5-fold cross-validation on the training
data. Table 1 contains results for selected languages.

The average accuracy is weighted by the frequency of occurrence of the
encodings. The rationale of the weighting is that it is more important that the
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algorithm correctly identifies the frequently used encodings than the rarely
used ones.

Note that the results may be harmed by incorrect “annotation” of the data.
We manually inspected some of the misclassified pages and often found out
that the algorithm detected the encoding of the page correctly, but the character
encoding specified in the meta tags was wrong. We therefore assume that the
accuracy of our system is higher than indicated by the numbers in the table.

4 Conclusion

We have presented chared, a system for detecting character encoding for
documents of which we know the language. Though our evaluation is only
preliminary and lacks comparison with other systems, we are convinced that
our approach works better than the general approach to the problem which
makes no assumptions about the language of the input. The main advantage
of our system compared to other available similar programs is a support for a
wide range of languages (currently 51). chared is released under the BSD open
source licence and is available for download from Google code5.
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