A Bayesian Approach to Query Language Identification

Jiří Materna^{1,2} and Juraj Hreško²

¹Centre for Natural Language Processing, FI MU Brno ²Research department at Seznam.cz, a.s.

December 3, 2011

Motivation

- Search engines
- Query language
 - language sensitive search
- Language of particular words in a query
 - morphological analysis
- Approaches for document language detection are insufficient

Existing approaches to language detection

- n-gram based approaches
 - compares letter n-gram histograms
 - compared using similarity metrics such as the cosine measure
 - Markov models
- dictionary based approaches
 - relative frequencies of words
 - need of thresholds for all languages
- other (based on phoneme transcription, compression rate, etc.)

The Bayesian approach I

Figure: Graphical model for query language identification.

The Bayesian approach II

 $P(L_Q)$ – prior probability of the language

 $P(w_i|L_{w_i})$ – smoothed relative frequencies

$$P(L_{w_i}|L_Q) = \left\{ egin{array}{ll} rac{9}{10} & ext{if } L_{w_i} = L_Q \ \\ rac{1}{10} imes rac{1}{|L|-1} & ext{else} \end{array}
ight.$$

The inference I

$$P(L_{Q}|w_{1}, w_{2}, ..., w_{N}) = \frac{P(L_{Q}, w_{1}, w_{2}, ..., w_{N})}{P(w_{1}, w_{2}, ..., w_{N})}$$

$$P(L_{w_{i}}|w_{1}, w_{2}, ..., w_{N}) = \frac{P(L_{w_{i}}, w_{1}, w_{2}, ..., w_{N})}{P(w_{1}, w_{2}, ..., w_{N})}$$

$$w_{1}$$

$$w_{2}$$

Very inefficient.

The inference II

$$P(L_{Q}|w_{1}, w_{2}, ..., w_{N}) = \frac{P(L_{Q}) \prod_{i \in <1...N>} P(w_{i}|L_{Q})}{\sum_{L'_{Q}} P(L'_{Q}) \prod_{i \in <1...N>} P(w_{i}|L'_{Q})}$$

$$P(L_{w_{i}}|w_{1}, w_{2}, ..., w_{N}) = \sum_{L_{Q}} P(L_{w_{i}}|L_{Q}, w_{i}) P(L_{Q}|w_{1}, w_{2}, ..., w_{N})$$

$$P(w_{i}|L_{Q}) = \sum_{L_{w}} P(w_{i}|L_{w}, L_{Q}) P(L_{w}|L_{Q}) = \sum_{L_{w}} P(w_{i}|L_{w}) P(L_{w}|L_{Q})$$

$$P(L_{w_{i}}|L_{Q}, w_{i}) = \frac{P(w_{i}|L_{w_{i}}) P(L_{w_{i}}|L_{Q}) P(L_{Q})}{\sum_{L'_{w_{i}}} P(w_{i}|L'_{w_{i}}) P(L'_{w_{i}}|L_{Q}) P(L_{Q})}$$

Evaluation I

Compared against

an n-gram implementation by Josef Toman (MFF UK):
 http://is.cuni.cz/studium/dipl st/index.php?index.php?doo=detail&did=45800

and the Google's algorithm:

http://code.google.com/apis/ajax/playground/#language_detect

Language	cz	en	sk	de	pl	fr
Examples [%]	65.7	18.0	6.0	5.3	2.7	2.3

Table: Language distribution in the query test set (300 examples).

Evaluation II

Set/Method	Bayesian	Google API	<i>n</i> -gram
All languages	91.67 %	61.33 %	51.67 %
Czech	91.37 %	50.76 %	46.70 %
English	92.59 %	75.93 %	52.26 %
1 token	79.31 %	36.21 %	39.66 %
2 tokens	95.80 %	61.54 %	47.55 %
3 or more tokens	93.00 %	76.00 %	64.00 %

Table: Language identification accuracy on various test sets.

Conclusions

- Both n-gram and Google's approaches significantly outperformed.
- The detection of word languages performs with accuracy of 73.33%.
- Possible extension:
 - learn the word language matrix on some relevant data instead of using just the simple function
 - dependency on previous words in the query (Markov chain)

Thank you for your attention.